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Abstract. Primary production (PP) of phytoplankton plays an essential role in food web 

dynamics, biogeochemical cycles and marine fisheries. It is used as one of the basic information 

for evaluating marine ecosystems. In this paper, monthly composite PP data on a 4 km x 4 km 

grid for the period 2003-2020 was used to evaluate the distributional characteristics of PP in the 

coastal marine area of Vietnam South Centre. The statistical results show that the climatological 

average of PP in 18 years reached 449.2 mgC/m2/day, ranged from 272.1 to 14,205.4 

mgC/m2/day. The PP has seasonal and spatial variations. In time, the lowest value of PP was in 

spring, and the highest was in winter; in space, PP tended to decrease from shore to offshore, PP 

was higher in coastal areas than in the open sea areas. During the northeast monsoon season, PP 

increased by more than 1000 mgC/m2/day in the coastal area. Meanwhile, in the southwest 

monsoon season, due to the ecological influence of the upwelling phenomenon, PP increased 

with a value greater than 1500 mgC/m2/day, distributed along the coastline of Ninh Thuan - Binh 

Thuan. Primary productivity positively correlated with chlorophyll content but negatively 

correlated with sea surface temperature with correlation coefficients of 0.9 and -0.6, respectively. 

There was a weak correlation between PP and ONI with correlation coefficients of -0.23. The 

temporal-spatial variation of PP was affected by the ENSO (El Niño-Southern Oscillation) 

phenomenon, the positive phase of ENSO (El Niño conditions) corresponded to lower PP, and 

the negative phase of ENSO (La Niña conditions) corresponded to higher PP. The research 

results from this paper can be used as a reference in marine ecosystem management. 

1.  Introduction 

Ocean primary production (PP) plays an essential role in the global carbon cycle, and the earth 

environmental system constitutes roughly half of the biosphere net PP [1]. The value of PP is used as an 
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indicator of environmental quality and ecological conditions in seawater [2, 3]. Besides that, primary 

productivity is the base of the food web in marine ecosystems, and it influences the nature of marine 

food webs and the abundance of marine organisms. It is the ultimate source of energy for all organisms 

in an ecosystem [4, 5]. However, long-term variability in PP has not been explored [6]. Traditional ship-

based in situ measurements are limited in their ability to capture PP large scale spatial and temporal 

dynamics and are time-consuming and expensive [7, 8]. While remote sensing data can use to observe 

the dynamics of the ocean surface, providing fundamental means for estimating oceanic PP on large 

spatiotemporal scales [9]. One of the essential applications of ocean colour data has been in the PP 

computation at large scales, using remotely sensed fields of phytoplankton biomass [4]. Today, PP in 

global and regional scales can be estimated by combine remote sensing techniques and mathematic 

modelling. Many satellite-based PP models have been used to calculate PP in the ocean in recent years, 

and they are classified into 3 categories: chlorophyll-based, carbon-based and phytoplankton absorption-

based models. The Vertically Generalized Production Model (VGPM) is a chlorophyll-based model 

whose photosynthesis rate is expressed as a function of water depth and photosynthetically active 

radiation, and it is used to used to estimate regional and global ocean PP [10]. 

Several studies have used remote sensing data to assess the distribution and variation of primary 

productivity in the East Sea (ES). Tan and Shi, 2009 [11] examined the spatio-temporal variability of 

ocean PP in the ES for 1998-2006 using the VGPM model. Liao et al., 2012 [12] investigated the 

interannual variations of PP associated with two different types of Niño in the ES using more than ten 

years of satellite-derived PP data. Zhou et al., 2017 [13] estimated the primary and the average monthly 

data of marine primary productivity in 8 days, a detailed analysis of the differences in the 2006-2015 

PP in the traditional fishing areas in the ES on the interannual and seasonal variation and spatial 

distribution. Xu et al., 2017 [14] used Moderate Resolution Imaging Spectroradiometer (MODIS) data 

to evaluate spatio-temporal variation of PP for the open ES. These studies have shown that peaks in 

average PP in the ES appeared in winter and summer, with the winter peak more significant than the 

summer peak [11]. ENSO and physicochemical environmental conditions influence PP spatial and 

temporal variability in the ES [11, 12]. The spatial distribution of PP in ES also indicated that the PP 

values are high in shallow offshore areas and then decreasing with the increasing distance away from 

the coast [14]. The VGPM model was suitable for PP estimation in the central-western East Sea [13]. 

Using remote sensing data to calculate the distribution of primary productivity in the coastal marine area 

of Vietnam South Centre was first published by Nguyen Tac An and Tong Phuoc Hoang Son in 2004 

[3]. They used ocean colour images to calculate the distribution of primary productivity in the upwelling 

region in the Southcentral region of the Vietnam sea. The studied results showed that the distribution 

trend of primary productivity we have from remote sensing technique is similar to other study results 

and direct measurements in this sea region. In 2012 and 2014, Phan Minh Thu et al. used MODIS Aqua 

data to evaluate marine primary productivity in the Vietnam sea. The result showed that the upwelling 

phenomenon impacted PP distribution suspended sediment from Mekong River nutrients supporting 

human activities [15, 16]. These studies also indicated that remote sensing data could potentially 

estimate primary productivity in Vietnamese marine regions. 

The coastal marine area of Vietnam South Centre is an area of particular importance to Vietnam marine 

economy. In addition, this area is affected by upwelling during the southwest monsoon season [17]. 

During upwelling occur, water that rises to the surface is typically colder and rich in nutrients. These 

nutrients are used by phytoplankton to increase the primary productivity of the oceanic region.  So 

reasonable fishing grounds typically are found where upwelling is common. Therefore, using remote 

sensing data sources to monitor the distribution and PP fluctuations in this area is a practical matter to 

be implemented.  

In this paper, empirical spatio-temporal mean and cross-correlation function analysis was conducted to 

accomplish the purposes: (1) Identifying the distribution and variation characteristics of PP; (2) 

Determining the correlation between PP and chlorophyll-a (chl-a), sea surface temperature (SST), 
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ENSO phenomenon in the coastal marine area of Vietnam South Centre for a period of 18 years (2003-

2020). The results of this article can be used to provide a scientific basis for socio-economic 

development planning and propose solutions to protect and develop the marine ecosystem sustainably 

2.  Study area 

The study area is the coastal marine zone of Vietnam South Centre, between latitude 10.30o to 16.25oN 

and longitude 107.30o to 112.00oE. The studied area is shown in Figure 1. The study area is influenced 

by winter monsoon (northeast monsoon) and summer monsoon (southwest). The interaction of the 

atmospheric-oceanic processes with the bottom topography and the coast has formed a substantial 

upwelling area from  Khanh Hoa to Binh Thuan waters during the southwest monsoon season, forming 

fishing grounds with high benefits in fish and molluscs [18]. During upwelling-active phases, cold water 

from deep towards the ocean surface, causing the SST to drop significantly [19]. 

 

 
 

Figure 1. Map showing the study area 

3.  Data and Methods 

The block diagram of the research method in this paper is shown in Figure 2. Accordingly, after 

determining the research objectives, three types of data are collected as follows: (1) PP data; (2) SST 

and chl-a data; and (3) Multivariate ENSO Index (MEI) and Oceanic Niño Index (ONI). The collected 

data source was used to carry out the following two research contents: (1) Analysis of spatial-temporal 

distribution characteristics; and (2) analyze the possible relationship between PP and chl-a, SST and 

ENSO phenomenon. To achieve the above two contents, this study uses the following two methods: (1) 

calculate empirical spatial and temporal mean of PP; and (2) correlation analysis. 
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Figure 2. The block diagram of the research method 

3.1.   Data   

In this study, monthly gridded data during 2003-2020 on PP with a spatial resolution of 4 km were from 

the standard Vertically Generalized Production Model by Behrenfeld and Falkowski (1997) using 

MODIS Aqua data, provided by National Oceanic and Atmospheric Administration – NOAA 

(https://coastwatch.pfeg.noaa.gov/erddap). 

To discuss the relationship between the oceanographic environment and PP, we used monthly averaged 

chl-a and SST with 4 km x 4 km spatial resolution from Level-3 Standard Mapped Image products 

observed by the MODIS Aqua satellite. Chl-a concentration and SST data were provided by the National 

Aeronautics and Space Administration Ocean Color Web site (https://oceancolor.gsfc.nasa.gov/).  

To assess the impact of ENSO on the PP over the coastal marine area of Vietnam South Centre, monthly 

time series of two climate indices ONI (Oceanic Niño Index) and MEI (Multivariate ENSO Index) 

during 2003-2020, was derived from National Oceanic and Atmospheric Administration 

(http://www.esrl.noaa.gov/psd/enso/). The ONI is NOAA primary indicator for monitoring El Niño and 

La Niña, which are opposite phases of the climate pattern called the El Niño-Southern Oscillation, or 

“ENSO” for short. NOAA considers El Niño conditions present when the Oceanic Niño Index is +0.5 

or higher, indicating the east-central tropical Pacific is significantly warmer than usual.  La Niña 

conditions exist when the Oceanic Niño Index is -0.5 or lower, indicating the region is cooler than usual. 

The MEI is the bi-monthly time series of the leading combined empirical orthogonal function of five 

different variables, namely, sea level pressure, sea surface temperature, the surface wind of combined 

zonal and meridional components, and outgoing longwave radiation, over the tropical Pacific basin 

(30°S-30°N and 100°E-70°W). Summary of data in this paper is shown in Table 1. 

The global PP, chl-a and SST data with netCDF format were preprocessed, including reading, image 

cropping, calculating average in R programming language, which were cropped by the scope of the 

studying area. 

Table 1. Summary of data in the study 

Name Product type Time period of data Data source 

PP 4 km  resolution 

monthly grid data From 1/2003 to 

12/2020 

https://coastwatch.pfeg.noaa.gov/erddap 

chl-a and SST https://oceancolor.gsfc.nasa.gov/ 

MEI and ONI 
Monthly time 

series data 
http://www.esrl.noaa.gov/psd/enso/ 

PP data 

Calculate empirical temporal 

of PP, chl-a and SST 

 

Relationship between PP and SST, 

chl-a, and ENSO phenomenon 

Spatial distribution 

characteristics of PP 

chl-a and SST data MEI and ONI data 

Correlation 

analysis 

Calculate empirical 

spatial of PP 

Temporal distribution 

characteristics of PP 

https://coastwatch.pfeg.noaa.gov/erddap
https://oceancolor.gsfc.nasa.gov/
https://coastwatch.pfeg.noaa.gov/erddap
https://oceancolor.gsfc.nasa.gov/
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3.2.  Methods 

3.2.1.  Calculate empirical spatial and temporal mean 

Assume for the moment that we have observations {PP (si; tj) for spatial locations {si: i = 1, 2,……, m} 

and times {tj: j = 1, 2,…T}. The empirical spatial mean for location µz,s (si) is then found by averaging 

over time by equation 1 [20]: 

 µz,s (si)   =
1

𝑇
∑ PP  (si;  tj)

𝑇

𝑗=1
  (1) 

where T is the time used to calculate the empirical spatial mean. 

The empirical temporal mean for time µz,s (tj), is given by equation 2 [20]: 

 µz,s (tj)   =
1

m
∑ PP  (si;  tj)

m

i=1
  (2) 

where m is the number of pixels of each scene. 

Based on the data results of PP, the spatial monthly mean of PP were exported to raster and then mapping 

and visualization in R software.  

3.2.2.  Correlation analysis 

Pearson correlation analysis was used to measures the statistical relationship between PP and chl-a, SST 

ONI, MEI, and further to evaluate the impact of ENSO on the distribution and variability of PP. Pearson 

correlation coefficient (𝑟) in the range from −1 (anti-correlation) to +1 (perfect correlation), between 

these two monthly time series x and y, with N elements as equation 3 [9]: 

 r  =
∑ (xi−𝐱) (yi−𝐲)

N

i=1

√∑ (xi−𝐱)2N

i=1
 √∑ (yi−𝐲)2n

j=1
 

=
Cov(x,y)

σxσy
  (3) 

with Cov being the covariance function, x and y the average and 𝜎𝑥 and 𝜎𝑦 the standard deviations for x 

and y, respectively. 

Besides that, cross-correlation function (CCF) analysis was also used to describe and model the 

relationship between two time series. In the relationship between two time series (yt and xt), the 

series yt may be related to past lags of the x-series. The cross-correlation function helps identify lags of 

the x-variable that might be useful predictors of yt [21]. The sample cross-correlation function is defined 

as the set of sample correlations between xt+h and yt for h = 0, ±1, ±2, ±3,... A negative value for h 

correlates the x-variable before t and the y-variable at time t. For instance, consider h = -2. The CCF 

value would give the correlation between xt-2 and yt . When one or more xt+h , with h negative, are 

predictors of yt, x leads y. When one or more xt+h, with h positive, are predictors of yt, x lags y. In this 

paper, x represents ONI/MEI, and y represents the PP value. This method used ONI/MEI to forecast 

fluctuations (increase/decrease) of the PP value. 

All the graphs, calculations, and statistical analyses were performed using R software. 

4.  Result and Discussion 

4.1.  Spatial-temporal distribution and variation characteristics of PP 

The statistical results show that the climatological average of PP in 18 years reached 449.2 mgC/m2/day, 

ranged from 272.1 to 14,205.4 mgC/m2/day. The monthly mean PP varied significantly between months 

in this study area reached the highest value in January with 578.5 mgC/m2/day, and the lowest PP in 

May with the value of 320.3 mgC/m2/day (Figure 3A). This result is similar to the monthly variation of 

multiyear averaged PP in the ES reported by Tan and Shi, 2009 [11].  
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In Figure 3A the PP reached 2 maximum peaks: one strong peak in winter (January) and one weak in 

summer (August). The winter peak was more significant than the summer, similar to previous studies in 

the ES [11, 22]. Previous research also showed that in the coastal marine area of Vietnam South Centre, 

the primary productivity in summer and winter is higher due to the eastern shelf and the Mekong River 

[13]. This paper said that PP seasonal distribution also indicates that PP reached the highest value in 

winter and lowest in spring, similar to Xu et al., 2017 [14] and Tan and Shi, 2009 [11]. 

Figure 3B showed the annual mean values of PP in 2003-2020 with the maximum value in 2011 and the 

minimum value in 2010 with corresponding values of 500 mgC/m2/day and 370.9 mgC/m2/day, 

respectively. Yearly averaged PP had the lowest values during the summer of 2010. This anomalous 

event coincided with the 2009-2010 El Niño event. Meanwhile, the maximum PP value in the winter of 

2011 coincided with the strong La Niña phenomenon in 2010-2011. Research by Zhou et al., 2017 [13] 

also showed that in the western part of the ES between 2006 and 2015, PP reached the maximum value 

in 2011 and the minimum value in 2010. 

 

Figure 3. Monthly (A) and yearly (B) average variations of mean PP (mgC/m2/day) from 2003-2020 

The spatial distribution results of the monthly mean value of PP over the past 18 years are listed in 

Figure 4. It tended to decrease from shore to offshore. PP was higher in coastal areas than in the open 

sea areas. The lowest levels of PP were identified during spring (March to May), and the region with 

high PP levels was limited to a very narrow band near the coast in the north of the coastal marine area 

of Vietnam South Centre (150 – 160N). Spring is the transition period between northeast monsoon to 

southwest monsoon, low levels of PP may be related to mixed layer depth. According to the discussion 

of Tan and Shi, 2009 [11] indicated that the mixed layer depth of ES is the shallowest in spring (< 20 

m) and deepest in winter (35 - 40 m). 

The average PP level in the south of the study area increases significantly in summer, although the 

average PP level from the coast of Da Nang to the coast of Khanh Hoa was still low. In the southwest 

monsoon season (June to August), due to the ecological influence of the upwelling phenomenon, PP 

increased with a value greater than 1,500 mgC/m2/day, distributed along the coastline of Ninh Thuan - 

Binh Thuan (Figure 4). High PP appears as a large jet, extending from the coastal waters of Ninh Thuan-

Binh Thuan northeastward during the annual southwest monsoon. A previous study showed that this jet 

of high PP in this study area was associated with coastal upwelling driven by the southwest monsoon 

and discharges from the Mekong River [11]. The phenomenon of coastal upwelling brought nutrients 

from the subsurface to the surface, and Mekong River discharge delivers a high flux of nutrients from 

the continent and into the sea. These nutrients are used by phytoplankton to increase the primary 

productivity of the coastal marine area of Vietnam South Centre. 
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The PP levels increased in autumn along the coastline in the study area during autumn (September to 

November). PP values decreased with the increasing distance away from the coast (Figure 4). 

During the northeast monsoon period (December to February of the following year), PP increased with 

a concentration larger than 1,000 mgC/m2/day along a narrow strip of shallow water adjacent to the 

coastline for the whole study area (109.50oE back to shore) (Figure 4). During winter, the northeast 

monsoon reached its strongest level, increasing the mixed layer depth and bringing nutrient-rich water 

to the surface, allowing PP to rise to highly elevated levels, the highest in winter [11]. 

 

 
Figure 4. Monthly mean climatology maps of PP (mgC/m2/day) in the period 2003-2020 

4.2.  Correlation between PP and SST, chl-a, ENSO 
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The spatial-temporal variation of PP is influenced by environmental conditions such as chl-a and SST. 

There exists a negative correlation between PP and SST, with the correlation coefficient reached -0.6 

(Pearson test, P < 0.05), previous research has also shown that PP and SST showed an excellent inverse 

correlation with a correlation coefficient equal to -0.8 [11]. This correlation revealed that anomaly 

high/low SST was associated with anomaly low/high PP levels. Availability of SST is a crucial factor 

limiting the distribution of PP. However, Tan and Shi, 2009 [11] showed that in the ES, the change of 

SST is not the cause that directly affects the change of PP. It has shown that, although there exists an 

inverse relationship between SST and PP, low SST is not the limiting cause of PP. As analyzed above, 

the southwest and northeast monsoon winds influence a change of SST and PP concentration. The strong 

monsoon winds affect the movement changes the value of the SST, and affect the mixing of water 

masses vertically related to the concentration of PP. Some factors such as monsoon winds, upwellings, 

and river discharges must significantly control phytoplankton biomass and primary productivity by 

changing the transport and distribution of nutrient-rich water. The above analysis shows that the 

availability of nutrients can be one of the reasons for limiting PP value in the coastal marine area of 

Vietnam South Centre. 

Meanwhile, PP and chl-a have a significant positive correlation with a correlation coefficient equal to 

0.9 (Pearson test, P < 0.05). Chlorophyll-a concentration has been invoked to indicate both PP (a flux) 

and phytoplankton biomass (a scalar). Besides, the VGPM is a “chlorophyll-based” model that estimates 

net PP from chlorophyll-a content. Thus, an increase/decrease in chl-a level leads to an increase/decrease 

in PP value. The results of this correlation analysis have shown that in the period from 2003 to 2020, 

low PP appeared with low chl-a, and high PP appeared with high chl-a. 

The results of the correlation analysis also showed that there was no linear correlation between PP and 

MEI (Pearson test, r = -0.13, P > 0.05). However, there was a weak correlation between PP and ONI 

(Pearson test, P < 0.05). The correlation of PP and ONI showed a significant negative correlation (r = -

0.23, P < 0.05), which suggested that ENSO was probably the dominant factor that drove PP variation 

in this study area. The correlation coefficient between ONI and PP is low, indicating that ENSO 

influence against the PP which seen from the correlation value is not too large. Based on the relationship 

between ONI and PP, the ONI was used to forecast the fluctuation of the PP value. Cross-correlation 

function analysis showed that the most dominant cross-correlations occur between h = -6 and about h = 

3 (Figure 5). There are nearly equal maximum values at h = 0, -1, and -2, with tapering occurring in 

both directions from that peak. The correlations in this region (h = 0, -1, -2) are negative, indicating that 

an increase (decrease) in the ONI value leads to a decline (increase) in the PP value with a phase 

difference of about 0 to 2 months (ONI ahead) (Figure 5). This result indicated that PP values fluctuate 

(increase or decrease) after the occurrence of the ENSO phenomenon about 0 to 2 months. 

The monthly time series of the PP and ONI were displayed in Figure 6. The correlation coefficient 

between PP and ONI has shown that PP is negatively correlated with ONI. That is, the positive phase of 

ENSO (El Niño conditions) corresponded to lower PP, and the negative phase of ENSO (La Niña 

conditions) corresponded to higher PP, the correlation between PP and ENSO in this study is consistent 

with previous studies in East Sea [23]. This result can be explained because the ENSO phenomenon 

influences the summer and winter monsoon. The intensity of the East Sea summer monsoon tends to be 

weaker (stronger) in years associated with a warm (cold) ENSO event [24]. Besides that a weak East 

Asian winter monsoon also generally links to an El Niño event. At the same time, a strong one 

corresponds to a La Niña event in the tropical eastern Pacific [25]. The weakened winter monsoon leads 

to a decrease in the depth of the mixed layer and decreases upward nutrient flux,  and the weakened 

summer monsoon leads to weak upwelling and reduced upward nutrient flux. 

The time-series graph of the ONI in Figure 6 indicated that in the period from 2003 to 2020, the ONI 

value reached 2 minimum peaks corresponding to 2 La Niña times in 2007-2008 and 2010-2011. 

Observing time series data of PP in Figure 6 showed that PP reached its highest value in November 2007 

with a value of about 1,409 mgC/m2/day due to the influence of strong La Niña in 2007. Besides, the La 
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Niña event of 2007-2008 also affected the abnormal increase in PP during the period from October 2007 

to February 2008. Meanwhile, the La Niña phenomenon in 2010-2011 caused an increase in PP value 

from October 2010 to March 2011 with a maximum peak of 669 mgC/m2/day in January 2011. 

Besides the 2 minimum peaks, Figure 6 also showed that ONI reached 2 maximum peaks during El Niño 

in 2009-2010 and 2015-2016. The 2009-2010 El Niño event caused not only a decrease in PP value in 

the winter of 2009 but also a decrease in PP in the summer of 2010 with minimum values of 417 

mgC/m2/day in February 2010 and 295 mgC/m2/day in June 2010, respectively. El Niño phenomenon 

in 2015-2016 also caused an abnormal decrease in PP value from October 2015 to January 2016, with 

the minimum PP value reaching 333 mgC/m2/day in November 2015. 

 

 

Figure 5. Cross-correlation function of  ONI and PP (dotted lines are 95% confidence intervals) 

 

Figure 6. Time series of mean PP (mgC/m2/day) (blue line) and ONI (red line) in the period of 2003-

2020 

5.  Conclusion 
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The monthly mean PP varied significantly between months (highest in January, lowest in May), seasons 

(maximum peak in winter and minimum peak in spring) and years (highest in 2011 and lowest in 2010) 

in the coastal marine area of Vietnam South Centre during the period of 2003-2020. The spatial 

distribution of PP tended to decrease from shore to offshore, and PP was higher in coastal areas than in 

the open sea areas. The increase in PP value in winter and summer is due to the influence of northeast 

monsoon and southwest monsoon, respectively. 

PP was positively correlated with chl-a and negatively correlated with SST with Pearson correlation 

coefficients of 0.9 and -0.6, respectively. PP also had a weak statistically significant correlation with 

ONI with a correlation coefficient of -0.23, so that ENSO influence against the PP which seen from the 

correlation value is not too large. The ENSO phenomenon affected the spatio-temporal variation of PP, 

the positive phase of ENSO corresponded to lower PP, and the negative phase of ENSO corresponded 

to higher PP, with a phase difference of about 0 to 2 months (ONI ahead). 
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