DSpace About DSpace Software
 

Digital Library >
Bộ danh mục tài liệu thư viện - Viện Hải dương học - VNIO library catalogue >
Công bố khoa học ở tạp chí quốc tế - International research papers (Bibliographic record and/or full-text) >

Please use this identifier to cite or link to this item: http://tvhdh.vnio.org.vn:8080/xmlui/handle/123456789/19617

Title: Giantism and its role in the harmful algal bloom species Phaeocystis globosa
Authors: Smith, Walker O.
Liu, Xiao
Tang, Kam W.
DeLizo, Liza M.
Doan, Nhu Hai
Nguyen, Ngoc Lam
Wang, Xiaodong
Keywords: Viet Nam coast
Harmful algal bloom
Phaeocystis globosa
Issue Date: 2014
Series/Report no.: Deep Sea Research Part II: Topical Studies in Oceanography, Volume 101, March 2014, pages 95–106;[http://www.sciencedirect.com/science/article/pii/S0967064512001968] [http://dx.doi.org/10.1016/j.dsr2.2012.12.005]
Abstract: The cosmopolitan alga Phaeocystis globosa forms large blooms in shallow coastal waters off the Viet Nam coast, which impacts the local aquaculture and fishing industries substantially. The unusual feature of this alga is that it forms giant colonies that can reach up to 3 cm in diameter. We conducted experiments designed to elucidate the ecophysiological characteristics that presumably favor the development of giant colonies. Satellite images of chlorophyll fluorescence showed that the coastal bloom was initiated in summer and temporally coincident with the onset of monsoonally driven upwelling. While determining the spatial distribution of Phaeocystis was not feasible, we sampled it in the near-shore region. A positive relationship was found between colony size and colonial cell densities, in contrast to results from the North Sea. Mean chlorophyll a concentration per cell was 0.45 pg cell−1, lower than in laboratory or temperate systems. The contribution of mucous carbon ranged from 63–95% of the total carbon; furthermore, mucous carbon per unit of colony surface area appeared to decrease with colony size, suggesting that the mucoid sheath became thinner as colonies grew larger. Sinking rates averaged 189 m d−1, strongly suggesting that giant colonies could only persist in shallow, turbulent environments. No relationship between colony size and sinking rates was observed. DOC concentrations of intracolonial fluid averaged 5940 μM, 25 times greater than ambient concentrations. Estimated diffusion coefficients of ions across the mucous envelope were ca. 1.0±0.3×10−7 cm2 s−1 for colonies with diameters of ca. 1.0 cm. In total, the characteristics of the giant colonies suggest that the Vietnamese strain is substantially different from that found in temperate environments, and that it has a number of unusual features that influence its growth and development in coastal Vietnamese waters.
URI: http://113.160.249.209:8080/xmlui/handle/123456789/19617
Appears in Collections:Công bố khoa học ở tạp chí quốc tế - International research papers (Bibliographic record and/or full-text)

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2012  Duraspace - Feedback