DSpace About DSpace Software
 

Digital Library >
Bộ danh mục tài liệu thư viện - Viện Hải dương học - VNIO library catalogue >
Công bố khoa học ở tạp chí quốc tế - International research papers (Bibliographic record and/or full-text) >

Please use this identifier to cite or link to this item: http://tvhdh.vnio.org.vn:8080/xmlui/handle/123456789/21521

Title: Surface circulation characterization along the middle southern coastal region of Vietnam from high-frequency radar and numerical modeling
Authors: Tran, Thanh Huyen
Sentchev, Alexei
To, Duy Thai
Herrmann, Marine
Ouillon, Sylvain
Keywords: Vietnam
Southern coastal region
Numerical modeling
Surface circulation
Issue Date: 2025
Series/Report no.: Ocean Science, Vol. 21: pp. 1–18, 2025;https://doi.org/10.5194/os-21-1-2025
Abstract: Coastal water dynamics along the Vietnamese middle southern coast (VMSC) region, part of the South China Sea, are highly complex with large spatiotemporal variability whose drivers are not yet well understood. For the first time, high-resolution surface current data from high-frequency radar (HFR) measurements were obtained in this region during the early (transition) phase of the Asian summer monsoon. The data were used for comparison with simulation results from a circulation model, SYMPHONIE, and ultimately to optimize the wind forcing in the model. Both modeling and HFR were able to show the spatial and temporal evolution of the surface circulation, but some discrepancies were found between model and HFR data on some days, coinciding with the evolution of the wind. Two methods were used to optimize the wind forcing, namely the ensemble perturbation smoother (EnPS) and the wind correction method using wind-driven surface currents (EkW). Both methods achieved a significant reduction (∼ 36 %–40 %) in the error of the surface current velocity fields compared to the measured data. Optimized winds obtained from the two methods were compared with satellite wind data for validation. The results show that both optimization methods performed better in the far field, where topography no longer affects the coastal surface circulation. The optimization results revealed that the surface circulation is driven not only by winds but also by other factors such as intrinsic ocean variability, which is not entirely controlled by boundary conditions. This indicates the potential usefulness of large velocity datasets and other data fusion methods to effectively improve modeling results.
URI: http://tvhdh.vnio.org.vn:8080/xmlui/handle/123456789/21521
ISSN: 1738-5261
Appears in Collections:Công bố khoa học ở tạp chí quốc tế - International research papers (Bibliographic record and/or full-text)

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2012  Duraspace - Feedback